If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48+3x^2=180
We move all terms to the left:
48+3x^2-(180)=0
We add all the numbers together, and all the variables
3x^2-132=0
a = 3; b = 0; c = -132;
Δ = b2-4ac
Δ = 02-4·3·(-132)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*3}=\frac{0-12\sqrt{11}}{6} =-\frac{12\sqrt{11}}{6} =-2\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*3}=\frac{0+12\sqrt{11}}{6} =\frac{12\sqrt{11}}{6} =2\sqrt{11} $
| 1/4-(8w-16)=22 | | 11x+13+9x-24=90 | | (x+6)+(4x-2)+(6x)=180 | | -7(x+11)-11x=-1-(1+3x) | | 2019x23=N | | 3h/5+5h/3=34 | | r-15=21 | | t+7=28 | | 90x=46260 | | 2x-32+4(3x-2,462)=14x | | 3x+11+100=16x+4 | | x÷9=27 | | 750x=1500 | | (-1+14x)+(21x+17)=180 | | 3m^2-5=-2 | | 36=3v+24 | | 630x=3150 | | 386x=26634 | | 25=(2x-7)5 | | x*1.2=1 | | 90+(4x+17)+(3x+10)=180 | | 100x+8=408 | | 1x-7;=23 | | 1−8v=–2v+7 | | x^2*2x+1=666 | | 17x18=(10x8) | | 2a=4=a | | 984x984= | | 651651x651651651= | | 5x10^12= | | b-4.9=4.1 | | (x+139)+(132)=180 |